
IBM i Encryption with FieldProc and Assure Encryption1 precisely.com | 877 700 0970

IBM i Encryption
with FieldProc and
Assure Encryption
Protecting Data at Rest

https://precisely.com

Organizations of all sizes are rushing to implement
encryption to protect sensitive digital assets including
personally identifiable information of customers, vendors,
and employees, and valuable intellectual property. IBM
introduced a Db2 database column level exit point
named Field Procedures, or FieldProc, in release 7.1 of
the IBM i operating system. This column-level exit point
is implemented directly in the Db2 database and is
invisible to applications (both IBM and user) that use
the database. Customers and third-party vendors are
developing FieldProc exit point software to provide the
encryption, key management, user control, audit and data
masking features that IBM i customers need to protect
sensitive data. This eBook explores the architecture,
implementation, critical features and limitations of Field
Procedures on the IBM i and points to some solutions to
the primary challenges. Where appropriate this eBook
points to Precisely’s security solutions for FieldProc on the
IBM i and describes how these challenges are being met.

Abstract

IBM i Encryption with FieldProc and Assure Encryption2 precisely.com | 877 700 0970

IBM i Encryption with FieldProc and Assure Encryption3 precisely.com | 877 700 0970

FieldProc Architecture & Implementation

FieldProc Architecture

FieldProc is a type of column-level exit point that is implemented directly in
the Db2 database. As is typical with any of the other IBM i exit points, IBM
provides the architecture for the exit point to invoke a user application, but
IBM does not provide that application. Customers or vendors can create
a FieldProc application based on the documented architecture of the exit
point. Precisely is one vendor who provides such software.

The exit point architecture is very simple. There are only two commands
and three functions that are supported. The two commands are:
•	 Start FieldProc
•	 End FieldProc

The three functions that are handled by a FieldProc program are:
•	 Initialization
•	 Encode (Encrypt)
•	 Decode (Decrypt)

When FieldProc is started on a column, the FieldProc program is called for
Initialization, and then called for each row in the table to provide for the
encryption of the column. When FieldProc is ended, the FieldProc program
is called for each row to decrypt the data. All other normal read, change,
and insert operations call the FieldProc program to provide for encryption
or decryption as needed. FieldProc is not invoked for a delete operation
on a row.

A Note on Terminology:

The term “column” is used in this paper when referring to a
field in a file, and the term “table” is used to refer to a physical
file. For the purposes of discussing FieldProc, these terms are
interchangeable, and the more modern terms “column” and
“table” will be used. In a similar way the term “index” is used to
refer to a column that is either a primary or secondary key. A
secondary key would include a key defined in a logical file.

IBM i Encryption with FieldProc and Assure Encryption4 precisely.com | 877 700 0970

FieldProc Implementation

FieldProc is a SQL feature and is implemented through SQL commands.
That is, FieldProc is not implemented through DDS, but only through SQL.
Through SQL you create or alter a table to have the FIELDPROC attribute
like this:

ALTER TABLE employee alter column
salary set FieldProc Userpgm

Likewise, you can remove a FieldProc attribute using a SQL DROP
statement like this:

ALTER TABLE employee alter column
salary Drop FieldProc

As noted above, when you start FieldProc with the CREATE TABLE or
ALTER TABLE commands, the e�ect is immediate. Starting FieldProc causes
the FieldProc program to be called for each row in the table to perform
encryption. Dropping the FieldProc attribute of a column causes the
FieldProc program to be called for each row to decrypt the data.

Certain operations will cause FieldProc to be invoked even if the column
data is not being used. For example, a legacy RPG program might read

a file from beginning to end but not use a particular column that is under
FieldProc control. Even though the column is not used in the RPG program,
FieldProc will be invoked to decrypt the value of the column for each
row. Note that a native SQL SELECT statement that does not include the
encrypted column will NOT invoke FieldProc for decryption.

Some work management operations are di�cult with the current IBM
implementation of FieldProc. For example, save and restore operations
when the restore library is di�erent than the save library can be
problematic. Additionally, change management operations where there
are changes to column attributes can be di�cult to manage and require
decrypting the database, applying the change, and then re-encrypting the
database. These limitations are especially true in legacy RPG applications.

Supported Field (Column) Types

Most column types are support for FieldProc including character, numeric,
date, time, and timestamp fields. You can use FieldProc on null-capable
fields and double-byte character fields. Some type of derived and counter
fields do not support FieldProc, but IBM i customers will find that all normal
application fields are supported. With FieldProc there is no need to
change the field size or attribute, nor is there any need to change or re-
compile applications.

Legacy DDS Files

Many IBM i customers have the impression that legacy DDS files will not
support FieldProc encryption. This is not true! You can readily implement
FieldProc encryption on files created with DDS, and it is not necessary
to convert them to DDL and SQL tables. As IBM notes, there are some
advantages to doing so, but it is not necessary and the large majority of
FieldProc users continue to use DDS files. As noted above, you can only
start and stop FieldProc using SQL commands, but these SQL commands
work fine on DDS-created files.

Encrypting Multiple Fields in One File

Db2 FieldProc control can be started on multiple columns in one database
table. There is no practical limit on the number of columns you can
select for FieldProc implementation. Of course, there are performance
implications for encrypting multiple columns as the FieldProc program
will be called independently for each column under FieldProc control. But
many IBM i customers place multiple columns in a table under FieldProc
encryption control. In some cases customers place hundreds of columns
under FieldProc control. FieldProc’s support for multiple columns includes
columns that are Primary or Secondary keys to the data. Please see the
following sections for a discussion of limitations related to encrypted
indexes and legacy RPG applications.

Many IBM i customers have the impression that legacy DDS files
will not support FieldProc encryption. This is not true!

IBM i Encryption with FieldProc and Assure Encryption6 precisely.com | 877 700 0970

Encryption

Encryption in FieldProc

It goes without saying that your FieldProc application will need to use an
encryption library to perform encryption and decryption operations. IBM
provides an encryption software library as a native part of the IBM i oper-
ating system. It is available to any customer or vendor who needs to imple-
ment encryption and decryption in their FieldProc programs.

Unfortunately, the native IBM i encryption library is very slow. This might
not be noticeable when encrypting or decrypting a small amount of data,
but batch operations can be negatively impacted. The advent of AES en-
cryption on the Power8 processor did little to mitigate the performance is-
sue with encryption. IBM i customers and third party vendors of FieldProc
solutions should use caution when implementing FieldProc using the native
IBM i AES software libraries. They are undoubtedly accurate implementa-
tions of AES encryption, but su�er on the performance front.

Performance and Assure Encryption

Precisely’s Assure Encryption FieldProc solution relies on NIST-
validated AES encryption libraries. Its optimized AES encryption
is more than 100 times faster than the encryption software
library in the IBM i OS on Power6 and Power7 processors, and
more than 50 times faster on Power8 processors with AES
encryption on the chip. This provides a significant performance
advantage to customers with larger Db2 data sets.

Unfortunately, the native IBM i encryption
library is very slow. The advent of AES
encryption on the Power8 processor did
little to mitigate the performance issue
with encryption.

IBM i Encryption with FieldProc and Assure Encryption7

Encryption Key Management

An encryption strategy is only as good as the key management
strategy, and it is di�cult to get key management right. For
companies doing encryption, the most common cause of an audit
failure is improper implementation of key management. Here are a
few core concepts that govern a good key management strategy:

•	 • Encryption keys should not be stored on the same systemas the
sensitive data they protect.

•	 • Security administrators of the key management solution
should have no access to the sensitive data, and database
administrators should have no access to encryption key
management (Separation of Duties). On the IBM i system this
means that security administrators such as QSECOFR and any
user with All Object (*ALLOBJ) should not have access to data
encryption keys or key encryption keys.

•	 • More than one security administrator should authenticate
before accessing and managing keys (Dual Control).

•	 • All access to encryption keys should be logged and audited.
This includes use of encryption keys as well as management of
keys.

•	 • Encryption keys should be mirrored/backed up in real time to
match the organization’s standards for system availability.

Key Management

precisely.com | 877 700 0970

Encryption Key Caching

Encryption keys are often used frequently when batch operations are
performed on sensitive data. It is not unusual that a batch program would
need to perform millions or tens of millions of encryption and decryption
operations. While the retrieval of an encryption key from the key server may
be very e�cient, performance may su�er when keys need to be retrieved
many times. This can be addressed through encryption key caching in the
local environment.

Secure key caching should be performed in separate program modules,
such as a service program, and should not be cached in user programs
where they are more subject to discovery and loss. Any module caching
an encryption key should have debugging options disabled and visibility
removed. Secure key caching is critical for system performance and care
should be taken to protect storage.

Encryption Key Rotation

Periodically changing the encryption keys (sometimes called “key rotation”
or “key rollover”) is important to the overall security of your protected data.
Both data encryption keys (DEK) and key encryption keys (KEK) should be
changed at appropriate intervals. The appropriate interval for changing
keys depends on a number of variables including the amount of data the
key protects and the sensitivity of that data, as well as other factors. This
interval is called the cryptoperiod of the key and is defined by NIST in
Special Publication 800-57 “Key Management Best Practices”. For most
IBM i customers rotation of data encryption keys should occur once a year,
and rotation of the key encryption keys should occur no less than once
every two years.

Periodically changing the encryption keys is important to the
overall security of your protected data. The appropriate interval
for changing keys depends on a number of variables including
the amount of data the key protects and the sensitivity of
that data.

IBM i Encryption with FieldProc and Assure Encryption9 precisely.com | 877 700 0970

Performance

The performance of an encryption solution is one of the biggest concerns
that an IBM i customer has when implementing FieldProc. There are many
factors that can a�ect performance of a FieldProc application and it is
wise to pay special attention to performance as you prepare to implement
a solution. Let’s look at several factors that can a�ect performance.

AES 128-bit and AES 256-bit Performance

All key sizes for AES encryption (128-bit, 192-bit, and 256-bit) are
considered secure for protecting all commercial sensitive data. Customers
naturally wonder if the smaller key size of 128-bit encryption means better
encryption performance when compared to 256-bit AES keys. In fact,
the performance di�erence is much smaller than one might imagine. The
smaller 128-bit key size uses 10 rounds during AES encryption, but the 256-
bit AES keys use 14 rounds during AES encryption. The IBM i RISC processor
optimizes cryptographic operations so the performance penalty for 256-
bit AES encryption is very small. Considering that cybersecurity guidelines
now recommend the use of 256-bit AES for protecting data in long-term
storage, and for protecting against advances in quantum computing,
you should always consider using 256-bit AES encryption for protecting
sensitive IBM i data.

AES Encryption Software Performance

Encryption software libraries can vary greatly in performance even when
using exactly the same methods and key sizes. Unfortunately, the native
IBM i AES encryption software library and APIs have a low performance
profile and this can have a negative impact on your IBM i applications.
Fortunately, there are high performance AES encryption libraries available
from third parties that have a much better performance profile. The
di�erence between the native IBM encryption libraries and third party
libraries can be more than 100 times in processing speed. Use care when
deploying an encryption solution to ensure that the performance meets
your minimum needs for processing time.

Security Based on Standards

Precisely’s high-performance encryption solutions for IBM i,
including the FieldProc implementation, use NIST-validated
256-bit, optimized AES encryption. This matches current security
recommendations for long term archival of sensitive data.

IBM i Encryption with FieldProc and Assure Encryption10 precisely.com | 877 700 0970

It is important that the FieldProc application be properly optimized as it
may be invoked many times during a typical interactive or batch request.

FieldProc for Multiple Columns in a Table

It is likely that you will need to protect multiple columns in a table.
For example, in a medical setting a table might contain the following
information for a patient:

•	 Name
•	 Date of birth
•	 Address
•	 Social security number
•	 Email address
•	 Etc.

In this case you will be protecting multiple columns in a single table.
This is fully supported by FieldProc and is very common in FieldProc
implementations. When FieldProc programs are properly optimized for
performance, you should find that the extra performance impacts per
column are not excessive. Thanks to the re-entrant model of the IBM
i operating system, the protection of multiple columns has a smaller
performance impact. Encrypting two columns is NOT twice
the performance impact as encryption one column.

Key Management Performance Impacts

As mentioned above, your FieldProc encryption solution should implement
good encryption key management practices. It is important that the key
management interface impose little performance penalty. This means that
the FieldProc application should use intelligent and secure key caching to
minimize the number of key retrieval operations that must be performed.
Additionally keys should not be exposed in user applications, but should
be protected in separate modules. When implemented properly, good key
management will impose extremely little performance impact.

Audit Logging Performance

One common feature of FieldProc applications is the ability to collect audit
information about user activity. This might include collecting information
about which users accessed decrypted information, etc. Audit logging
will always exact a performance price. If you need to collect audit logs of
FieldProc activity, be sure to measure the performance impact of audit log
collection in your own environment.

HINT:
When protecting multiple columns in a table use the same
encryption key for each column if this is acceptable to your
security policy. Limiting the number of encryption keys used in a
table will provide a performance benefit.

Power8 On-Chip AES Encryption Performance

The Power8 processor from IBM provides a hardware implementation
of AES encryption to improve the performance of encryption. All models
of IBM i servers built with Power8 (or greater) processors include this
hardware implementation of AES encryption. In concept this is similar to
the Intel processors which provide AES encryption through the AES-NI
implementation.

While encryption performance improved with the Power8 processor, it is
not a large improvement. Encryption speeds using the native IBM i APIs are
about double the speed of the previous versions of the Power processor,
but still greatly lag in performance compared to third party encryption
libraries. It should be noted that this performance lag disappears when the
IBM APIs are used to encrypt very large blocks of information. For example,
the AES implementation on the Power8 processor can encrypt a megabyte
of information at incredible speeds. Unfortunately, this does not apply to
the smaller blocks of data (credit card numbers, social security numbers,
etc.) that are typically stored in Db2 database tables. It is likely that IBM i
customers using IASP encryption will see a major performance benefit with
the new Power8 systems.

FieldProc Program Performance

When FieldProc invokes a program to perform encryption or decryption, it
makes a dynamic call to a program executable. There is always a certain
amount of overhead when making a dynamic call to an external program,
and this is true in FieldProc context, too. The more columns in a table that
are under FieldProc control, the more dynamic calls you will have to the
FieldProc program, as the FieldProc program is invoked independently
for each column. It is important that the FieldProc program be properly
optimized for performance. Some key performance measures include:

•	 File I/O operations by the FieldProc program are minimized.
•	 Program modules are optimized on compilation.
•	 The program executable is optimized on compilation.
•	 Memory management is optimized for performance.
•	 Visibility of program objects is removed to improve performance.
•	 The FieldProc program is optimized for multi-threaded operation.
•	 Audit logging is optimized for performance.

IBM i Encryption with FieldProc and Assure Encryption12 precisely.com | 877 700 0970

Limitations

Encrypted Indexes

The Db2 FieldProc implementation fully supports the encryption of columns
which are indexes (keys) to the data in a native SQL context, and this
includes RPGSQL applications. However, there are some severe limitations
with legacy RPG and COBOL applications around encrypted index order.
It is important to understand these limitations if you are approaching
FieldProc with a large inventory of legacy applications.

Legacy RPG applications use record-oriented operations and not set-
oriented operations that are typical of SQL. Many record-oriented
operations in RPG will work as expected. For example, a CHAIN operation
on an encrypted index to retrieve a record from a Db2 table will work. If
the record exists, it will be retrieved, and FieldProc will decrypt the value.
However, many range and data ordering operations will not work as
expected with legacy RPG programs. Consider the following logic:

•	 SETLL (position to an particular location in the index for a fiel)
•	 WHILE (some condition)
•	 READ (Read the next record by the index)
•	 END WHILE

The SETLL (Set lower limit) operation will probably work if the particular
index value exists. However, the program logic will then read the next
records based on that position in the file. IBM i developers are surprised to
learn that they will be reading the next record based on the ENCRYPTED
value, and not on the decrypted value which is what they might expect.
The result is often empty subfiles and printed reports. This is very common
logic in applications where indexes are encrypted. Note that your RPG
program will not get a file I/O error, it just won’t produce the results you
expect.

In simpler applications this side-e�ect of encrypted indexes is not
significant or can easily be programmed around. However, in some
applications where sensitive data is encrypted across a large number of
tables (think social security number in banking applications) this can be
a significant limitation. The solution to this issue is discussed in the
following section.

Overcoming Encrypted Index Limitations in RPG

The limitations of encrypted indexes in legacy RPG applications often
lead IBM i customers to abandon their encryption projects. The prospect
of converting a large number of legacy RPG applications to newer SQL
interfaces can be daunting. Their legacy RPG applications contain a lot of
valuable business logic, and the e�ort to make the conversion can be
quite large.

Wouldn’t it be great if you could wave a magic wand and make legacy
RPG applications use SQL without any changes? IBM opened a path to
this type of solution with Open Access for RPG, or OAR. OAR allows for the
substitution of traditional file I/O operations with user-written “Handlers”. In
essence, you can replace the native file I/O operations of RPG with your
own code. No change to program file handling or business logic! The OAR
capability spawned a number of user interface modernization products,
and other solutions that take advantage of this. Imagine if your RPG screen
handling I/O with Execute Format (EXFMT) could be replaced with a web-
based GUI library. Instant modernization of the UI! There are now many
solutions that leverage OAR for UI modernization.

Join Logical Files With DDS

One limitation of logical files created with DDS specifications involves join
logical files. You will not be able to create DDS join logical files where the
join involves an encrypted field with FieldProc. You will get an error about
invalid data type usage. This is an IBM limitation, and there is no known
workaround for this issue. Note that this limitation only applies to DDS join
logical files and does not apply to SQL joins using encrypted indexes. Most
IBM i customers will need to change their RPG or COBOL program logic to
avoid the use of DDS join logical files which use encrypted indexes.

Precisely o�ers an OAR solution that maps all of the traditional
RPG I/O primitives (CHAIN, READ, READE, SETLL, etc.) to
equivalent SQL operations. With one line of code that defines
an OAR handler for a file, the program I/O is changed to a
native SQL operation, or set of operations, that mimic the
original RPG primitive. By using the native SQL Query Engine
(SQE) in place of legacy RPG I/O operations, the problem with
encrypted indexes is eliminated.

IBM i Encryption with FieldProc and Assure Encryption14

Application Changes

Legacy RPG applications that use encrypted
indexes often need re-design and re-
programming to avoid the problems of
encrypted indexes. You can avoid these
issues if you are using an Open Access for
RPG (OAR) solution that maps the legacy
RPG record-based file operations to native
SQL and the SQL Query Engine (See the
note above about Precisely’s OAR/SQL
solution).

If you need to re-design your RPG
applications to avoid encrypted indexes,
consider putting all of your sensitive data
in a table that is indexed by some non-
sensitive value such as a sequence number
or customer number, and use FieldProc
to encrypt that table. There are many
approaches to application redesign, and you
should be able to find a method that works
for you.

Change Management

IBM i customers who have deployed change
management solutions can encounter
challenges with FieldProc implementations.
While most of these challenges are
surmountable, it will take e�ort on the
part of the systems management team
to integrate FieldProc controls into their
change management strategy. Unfortunately,
the implementation of FieldProc does
not provide much in the way of support
for change management systems. The
activation of FieldProc changes an attribute
on the column in the table, but change
management systems generally are not
aware of this attribute. It can be challenging
to promote table and column level changes
and properly retain the FieldProc attribute of
the data. Look for a FieldProc implementation
that provides a command-level interface to
stop, start, and change FieldProc definitions.
These commands can help you integrate
FieldProc encryption into your change
management strategy.

precisely.com | 877 700 0970

IBM i Encryption with FieldProc and Assure Encryption15 precisely.com | 877 700 0970

Additional Security Controls

User Access Controls

The implementation of a FieldProc
encryption solution also opens the door
for additional security controls. One of
the important security controls is user
access control to decrypted data. You will
want to prevent unauthorized users from
viewing decrypted data and your FieldProc
application should provide for this ability.

Good security practice includes establishing
proper object-level security for your
applications and databases. FieldProc-level
access controls complement object-level
security and provide additional levels of
control and audit. Good security practice is
to use a whitelist approach for these access
controls and data masking. This gives you
the ability to control access to sensitive
information for highly authorized users such
as QSECOFR or any user with All Object
(*ALLOBJ) authority.

Data Masking

Another important security feature that
should be implemented in your FieldProc
solution is data masking. Compliance
regulations such as the PCI Data Security
Standard (PCI-DSS) require appropriate
data masking, and this can only e�ectively
be applied as a part of the FieldProc
decryption process. In the same way that
user access controls should be based on a
whitelist approach, data masking should be
based on a similar approach. Look for a data
masking implementation that allows you
to specify a default masking rule – you will
want to fully mask data by default and only
allow selected users to see partially masked
or unmasked data.

IBM and Third Party Utilities and Backup

Backup and Archival Encryption
One advantage of using FieldProc is that your backup will also be
encrypted when moved to o�-site storage. With the advent of CryptoLocker
and similar malware, the need for independent, non-attached backup and
archival has increased. When you use any of the IBM SAV commands such
as SAVLIB, SAVOBJ, and so forth, the encrypted status of your FieldProc
protected data is preserved.

If you are using a third party solution for backup, be sure that the vendor
is using the native IBM save command in their solution. The use of FTP,
ODBC and other methods for backup will almost certainly result in
unencrypted data in the backup.

FieldProc and FTP, ODBC, and Other File Utilities
Many IBM and third party file utilities are used to access Db2 data. Since
FieldProc is implemented at the Db2 database layer, when these utilities
access information that is protected by FieldProc, the database will invoke
FieldProc to decrypt the data on a read operation. This means you must
use caution when granting access to Db2 data by utilities such as FTP,
ODBC and others. Be sure you have user access controls in place and
be sure to implement data masking in your FieldProc implementation.
Unfortunately, the FieldProc application does not have visibility to
which application is making the data access request and cannot apply
applicationlevel controls.

Be sure to consider adding additional data protection controls to your
IBM i server. This should include exit point security for FTP, ODBC and other
utilities. You should also consider implementing multi-factor authentication
for administrator access to your IBM i server.Precisely o�ers solutions for both access control and multi-factor

authentication. Implementing these disciplines can provide
additional protection for Fieldproc configurations.

Assure Encryption

Assure Encryption is trusted by organizations worldwide to protect
their private data. The solution helps organizations meet the data
security compliance requirements of PCI DSS, HIPAA, and state
privacy notification laws. Assure Encryption protects sensitive
information in database fields, backup tapes, Save Files, IFS files,
reports, and everywhere your data resides on the IBM i. The solution
is optimized for performance and the encryption APIs perform up to
100x faster than IBM’s encryption APIs.

Assure Encryption is the only NIST-validated AES database
encryption solution for IBM i. With an intuitive and familiar IBM
i interface, administrators can easily configure and manage
encrypted files and reduce security exposures by implementing
controls about who can view decrypted data. Assure Encryption is
in use by Fortune 500 companies worldwide.

precisely.com | 877 700 0970IBM i Encryption with FieldProc and Assure Encryption17

“Staples wouldn’t even consider a
solution that didn’t go through a NIST
validation. Assure Encryption was a

natural choice.”

Staples

precisely.com | 877 700 097018 IBM i Encryption with FieldProc and Assure Encryption

IBM i Encryption with FieldProc and Assure Encryption19 precisely.com | 877 700 0970

About Precisely
Precisely is the global leader in data integrity, providing
accuracy and consistency in data for 12,000 customers
in more than 100 countries, including 90 percent of the
Fortune 100. Precisely’s data integration, data quality,
location intelligence, and data enrichment products
power better business decisions to create better
outcomes. Learn more at www.precisely.com.

www.precisely.com Copyright ©2020 Precisely. All rights reserved worldwide. All other company and product names used herein may be the trademarks of their respective companies.

https://www.precisely.com

